

Roll. No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E (Full Time) END - SEMESTER EXAMINATIONS, MAY/JUNE - 2024

Computer Science and Engineering - IV Semester

MA6201 - Linear Algebra (Regulations 2018 - RUSA)

Time: 3 Hours

Maximum: 100 marks

CO1	Perform linear transformations and write down the matrix representing a linear transformation.
CO2	Find the Gram-Schmidt orthogonalization of a matrix.
CO3	Determine the rank, determinant, eigenvalues and eigenvectors, diagonalization, and different factorizations of a matrix.
CO4	Solve a linear system of equations using direct and iterative methods.
CO5	Solve Eigen value problems.
CO6	Formulate linear equations for real life problems and solve them.

BL - Bloom's Taxonomy Levels: L1 - Remembering; L2 - Understanding; L3 - Applying; L4 - Analysing; L5 - Evaluating; L6 - Creating.

Answer ALL questions.

PART - A (10 × 2 = 20 Marks)

Q.No	Questions	Marks	CO	BL
1.	Is the set $\{f(x) \in P_3(\mathbb{R}) : f(1) = 1\}$ a subspace of $P_3(\mathbb{R})$? Justify the answer.	2	CO1	L2
2.	State true or false with explanation. If V is a finite dimensional vector space over a field F , then all the bases of V have the same number of elements.	2	CO1	L1
3.	Let $\beta = \{1, x + 4, 8x^2 + 6, 9x^3\}$ be an ordered basis for $P_3(\mathbb{R})$. If the coordinate vector of $f(x)$ relative to the basis β is $[f]_\beta = [4, 6, -9, 2]^T$, then find $f(x)$.	2	CO1	L4
4.	Explain whether the matrix $\begin{pmatrix} -4 & 0 & 0 \\ 2 & 5 & 0 \\ -1 & 1 & 3 \end{pmatrix}$ is diagonalizable?	2	CO3	L3
5.	Consider the vector space \mathbb{R}^2 and let $x, y \in \mathbb{R}^2$. Determine whether \mathbb{R}^2 with the function $\langle x, y \rangle = x_1y_2 + x_2y_1$ is an inner product space.	2	CO2	L1
6.	Prove that x and y are orthogonal if and only if $\ x+y\ ^2 = \ x\ ^2 + \ y\ ^2$.	2	CO2	L1
7.	Write any two differences between the direct methods and iterative methods for solving the system of linear equations.	2	CO4	L2
8.	Write the formula of Gauss-Seidal method for the system of linear equations with three unknowns.	2	CO4	L2

9.	Find the dominant eigenvalue and the corresponding eigenvector of the matrix $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by using power method. Take the initial approximation as $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.	2	CO5	L2
10.	Find the singular values of the matrix $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.	2	CO6	L1

Answer ANY EIGHT questions

PART - B (8 × 8 = 64 Marks)

Q.No	Questions	Marks	CO	BL
11.	Check whether the set $S = \{x^3, 2x^2, x, 0\}$ is linearly independent or not in $P_3(\mathbb{R})$? Does S generate $P_3(\mathbb{R})$? Explain.	8	CO1	L3
12.	Let V be a vector space and u_1, u_2, \dots, u_n be distinct vectors in V . Then prove that $\beta = \{u_1, u_2, \dots, u_n\}$ is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β .	8	CO1	L4
13.	The matrix of the linear mapping $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ relative to the ordered basis $\{(0, 1, 1)(1, 0, 1)(1, 1, 0)\}$ of \mathbb{R}^3 and $\{(1, 0)(0, 1)\}$ of \mathbb{R}^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 1 \end{pmatrix}$. Find the linear transformation and the matrix of T relative to the ordered basis $\{(1, 1, 0)(1, 0, 1)(1, 1, 0)\}$ of \mathbb{R}^3 and $\{(1, 1)(0, 1)\}$ of \mathbb{R}^2 .	8	CO1	L4
14.	Let T be the linear operator on $P_2(\mathbb{R})$ defined by $T(f(x)) = f(1) + f'(0)x + (f'(0) + f''(0))x^2.$ Test T for diagonalizability.	8	CO3	L3
15.	Determine the eigenspace corresponding to each eigenvalues of the matrix $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$. Also, find its dimensions.	8	CO3	L5
16.	Prove that the set $\{\frac{1}{\sqrt{5}}(1, 2), \frac{1}{\sqrt{5}}(2, -1)\}$ is an orthonormal basis for \mathbb{R}^2 with respect to the standard inner product.	8	CO2	L3
17.	Apply Gram-Schmidt orthogonalization process to obtain an orthonormal basis for the subspace of \mathbb{R}^3 generated by $\{(1, 0, 1), (1, 0, -1), (0, 3, 4)\}$ with respect to the standard inner product.	8	CO2	L5
18.	Apply Gauss Jordan method to solve the system of linear equations $x - u + z = 1$, $-3x + 2y - 3z = -6$, $2x - 5y + 4z = 5$.	8	CO4	L4

19.	Solve the system of equations $x + y - z = 4$, $x - 2y + 3z = -6$, $2x + 3y + z = 7$ by LU decomposition method.	8	CO4	L4
20.	Use SOR method to solve the system of equations $2x - 8y + z = -5$, $3x + y - z = 3$, $x - 2y + 9z = 8$.	8	CO4	L4
21.	Find all the eigen values and eigenvectors of the matrix $\begin{pmatrix} 2 & 3 & \frac{1}{\sqrt{2}} \\ 3 & 2 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 5 \end{pmatrix}$ using Jacobi rotation method.	8	CO5	L5
22.	Find the QR decomposition of the matrix $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$.	8	CO6	L5

PART - C (2 × 8 = 16 Marks)

Q.No	Questions	Marks	CO	BL
23.	Let Define the linear transformation $T : P_2(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by $T(f(x)) = \begin{pmatrix} f(1) - f(2) & 0 \\ 0 & f(0) \end{pmatrix}$. Verify the dimension theorem.	8	CO3	L3
24.	Find the singular value decomposition of the matrix $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$.	8	CO6	L5

